NTPsec

pitot.home.arpa

Report generated: Tue Feb 3 22:45:01 2026 UTC
Start Time: Tue Jan 27 22:45:01 2026 UTC
End Time: Tue Feb 3 22:45:01 2026 UTC
Report Period: 7.0 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -84.410 -60.752 -29.818 -0.886 33.679 50.924 73.091 63.497 111.676 19.753 0.517 µs -3.981 12.08
Local Clock Frequency Offset 11.909 11.937 12.054 12.420 12.709 12.751 12.765 0.655 0.814 0.189 12.405 ppm 2.681e+05 1.73e+07

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.233 0.326 0.389 0.689 8.541 11.519 14.595 8.152 11.193 2.559 1.765 µs 1.541 6

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.032 0.056 0.097 0.695 2.396 4.026 4.559 2.299 3.970 0.789 0.913 ppb 2.231 8.048

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -84.410 -60.752 -29.818 -0.886 33.679 50.924 73.091 63.497 111.676 19.753 0.517 µs -3.981 12.08

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.909 11.937 12.054 12.420 12.709 12.751 12.765 0.655 0.814 0.189 12.405 ppm 2.681e+05 1.73e+07
Temp LM0 41.000 42.000 43.000 45.000 46.000 47.000 47.000 3.000 5.000 1.049 44.600 °C
Temp LM1 48.000 53.000 66.000 73.000 75.000 75.000 76.000 9.000 22.000 3.881 71.421 °C
Temp LM2 37.000 44.000 58.000 67.000 70.000 70.000 71.000 12.000 26.000 4.528 65.322 °C
Temp LM3 47.000 52.000 66.000 73.000 74.000 75.000 76.000 8.000 23.000 3.998 71.271 °C
Temp LM4 44.000 49.000 62.000 70.000 73.000 73.000 74.000 11.000 24.000 4.347 68.472 °C
Temp LM5 39.000 45.000 59.000 67.000 69.000 69.000 70.000 10.000 24.000 4.206 64.769 °C
Temp LM6 44.000 49.000 61.000 69.000 71.000 72.000 73.000 10.000 23.000 4.058 67.479 °C
Temp LM7 46.000 51.000 64.000 71.000 74.000 74.000 75.000 10.000 23.000 4.014 69.864 °C
Temp LM8 46.000 51.000 64.000 72.000 74.000 75.000 75.000 10.000 24.000 4.263 70.420 °C
Temp LM9 47.000 52.000 64.000 72.000 74.000 75.000 75.000 10.000 23.000 4.003 70.347 °C
Temp ZONE0 49.000 53.000 66.000 73.000 75.000 75.000 76.000 9.000 22.000 3.850 71.438 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de)

peer offset 2001:638:a000:1123:123::4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de) 96.123 153.982 187.164 273.625 393.343 452.842 535.824 206.179 298.860 63.888 278.750 µs 48.58 204.9

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -940.068 -536.523 -434.372 -226.590 83.224 239.724 439.694 517.596 776.247 161.134 -208.462 µs -18.56 60.33

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset NMEA(0)

peer offset NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset NMEA(0) -84.411 -60.753 -29.819 -0.887 33.680 50.925 73.092 63.499 111.678 19.754 0.517 µs -3.981 12.08

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de)

peer jitter 2001:638:a000:1123:123::4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de) 46.457 102.562 133.938 226.190 318.584 358.337 1,750.111 184.646 255.775 65.812 227.155 µs 28.04 270.1

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 70.613 103.859 137.887 231.449 326.579 396.041 1,895.974 188.692 292.182 77.312 234.299 µs 21.88 235.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter NMEA(0)

peer jitter NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter NMEA(0) 0.121 0.232 0.336 1.158 11.416 21.891 35.122 11.080 21.659 4.226 2.862 µs 1.911 9.677

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.909 11.937 12.054 12.420 12.709 12.751 12.765 0.655 0.814 0.189 12.405 ppm 2.681e+05 1.73e+07
Local Clock Time Offset -84.410 -60.752 -29.818 -0.886 33.679 50.924 73.091 63.497 111.676 19.753 0.517 µs -3.981 12.08
Local RMS Frequency Jitter 0.032 0.056 0.097 0.695 2.396 4.026 4.559 2.299 3.970 0.789 0.913 ppb 2.231 8.048
Local RMS Time Jitter 0.233 0.326 0.389 0.689 8.541 11.519 14.595 8.152 11.193 2.559 1.765 µs 1.541 6
Server Jitter 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de) 46.457 102.562 133.938 226.190 318.584 358.337 1,750.111 184.646 255.775 65.812 227.155 µs 28.04 270.1
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 70.613 103.859 137.887 231.449 326.579 396.041 1,895.974 188.692 292.182 77.312 234.299 µs 21.88 235.6
Server Jitter NMEA(0) 0.121 0.232 0.336 1.158 11.416 21.891 35.122 11.080 21.659 4.226 2.862 µs 1.911 9.677
Server Offset 2001:638:a000:1123:123::4 (ntp3.rrze.ipv6.uni-erlangen.de) 96.123 153.982 187.164 273.625 393.343 452.842 535.824 206.179 298.860 63.888 278.750 µs 48.58 204.9
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -940.068 -536.523 -434.372 -226.590 83.224 239.724 439.694 517.596 776.247 161.134 -208.462 µs -18.56 60.33
Server Offset NMEA(0) -84.411 -60.753 -29.819 -0.887 33.680 50.925 73.092 63.499 111.678 19.754 0.517 µs -3.981 12.08
Temp LM0 41.000 42.000 43.000 45.000 46.000 47.000 47.000 3.000 5.000 1.049 44.600 °C
Temp LM1 48.000 53.000 66.000 73.000 75.000 75.000 76.000 9.000 22.000 3.881 71.421 °C
Temp LM2 37.000 44.000 58.000 67.000 70.000 70.000 71.000 12.000 26.000 4.528 65.322 °C
Temp LM3 47.000 52.000 66.000 73.000 74.000 75.000 76.000 8.000 23.000 3.998 71.271 °C
Temp LM4 44.000 49.000 62.000 70.000 73.000 73.000 74.000 11.000 24.000 4.347 68.472 °C
Temp LM5 39.000 45.000 59.000 67.000 69.000 69.000 70.000 10.000 24.000 4.206 64.769 °C
Temp LM6 44.000 49.000 61.000 69.000 71.000 72.000 73.000 10.000 23.000 4.058 67.479 °C
Temp LM7 46.000 51.000 64.000 71.000 74.000 74.000 75.000 10.000 23.000 4.014 69.864 °C
Temp LM8 46.000 51.000 64.000 72.000 74.000 75.000 75.000 10.000 24.000 4.263 70.420 °C
Temp LM9 47.000 52.000 64.000 72.000 74.000 75.000 75.000 10.000 23.000 4.003 70.347 °C
Temp ZONE0 49.000 53.000 66.000 73.000 75.000 75.000 76.000 9.000 22.000 3.850 71.438 °C
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!