NTPsec

pitot.home.arpa

Report generated: Sun May 4 09:45:01 2025 UTC
Start Time: Sun Apr 27 09:45:01 2025 UTC
End Time: Sun May 4 09:45:01 2025 UTC
Report Period: 7.0 days

Top   Daily Stats   Weekly Stats  

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -34.405 -0.051 -0.027 0.002 0.032 0.477 66.509 0.059 0.528 0.904 0.006 ms 26.42 3378
Local Clock Frequency Offset 4.271 10.549 12.001 12.477 12.883 12.989 13.029 0.883 2.439 0.575 12.410 ppm 8779 1.816e+05

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.000 0.000 0.000 0.001 0.010 0.077 33.458 0.010 0.077 1.042 0.062 ms 18.99 494

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.000 0.045 0.114 0.614 2.946 40.483 992.225 2.832 40.438 35.399 3.331 ppb 17.05 406

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -34.405 -0.051 -0.027 0.002 0.032 0.477 66.509 0.059 0.528 0.904 0.006 ms 26.42 3378

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 4.271 10.549 12.001 12.477 12.883 12.989 13.029 0.883 2.439 0.575 12.410 ppm 8779 1.816e+05
Temp LM0 34.000 34.000 34.000 37.000 39.000 39.000 39.000 5.000 5.000 1.388 36.828 °C
Temp LM1 42.000 48.000 61.000 64.000 68.000 73.000 74.000 7.000 25.000 3.624 64.437 °C
Temp LM2 30.000 36.000 52.000 57.000 62.000 66.000 67.000 10.000 30.000 4.239 56.755 °C
Temp LM3 39.000 47.000 60.000 64.000 68.000 73.000 74.000 8.000 26.000 3.887 64.200 °C
Temp LM4 36.000 42.000 56.000 61.000 65.000 70.000 72.000 9.000 28.000 3.799 60.833 °C
Temp LM5 32.000 37.000 53.000 57.000 61.000 66.000 67.000 8.000 29.000 4.051 57.186 °C
Temp LM6 39.000 44.000 57.000 60.000 63.000 68.000 70.000 6.000 24.000 3.137 59.872 °C
Temp LM7 40.000 45.000 58.000 62.000 66.000 71.000 72.000 8.000 26.000 3.620 62.032 °C
Temp LM8 41.000 46.000 60.000 63.000 67.000 72.000 73.000 7.000 26.000 3.435 63.130 °C
Temp LM9 41.000 46.000 60.000 63.000 67.000 71.000 72.000 7.000 25.000 3.387 63.223 °C
Temp ZONE0 42.000 48.000 61.000 64.000 68.000 73.000 74.000 7.000 25.000 3.637 64.454 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -155.580 -0.638 -0.291 0.009 0.325 1.354 33.262 0.617 1.993 3.796 -0.050 ms -37.23 1502

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset NMEA(0)

peer offset NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset NMEA(0) -149.658 -0.051 -0.027 0.002 0.032 0.485 66.509 0.059 0.536 1.868 -0.009 ms -54.46 4795

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com)

peer jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 0.000 0.104 0.144 0.233 0.340 1.331 28.000 0.196 1.227 1.146 0.319 ms 14.55 279

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter NMEA(0)

peer jitter NMEA(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter NMEA(0) 0.000 0.000 0.000 0.001 0.014 0.056 66.960 0.014 0.055 1.617 0.063 ms 28.47 997.4

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 4.271 10.549 12.001 12.477 12.883 12.989 13.029 0.883 2.439 0.575 12.410 ppm 8779 1.816e+05
Local Clock Time Offset -34.405 -0.051 -0.027 0.002 0.032 0.477 66.509 0.059 0.528 0.904 0.006 ms 26.42 3378
Local RMS Frequency Jitter 0.000 0.045 0.114 0.614 2.946 40.483 992.225 2.832 40.438 35.399 3.331 ppb 17.05 406
Local RMS Time Jitter 0.000 0.000 0.000 0.001 0.010 0.077 33.458 0.010 0.077 1.042 0.062 ms 18.99 494
Server Jitter 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) 0.000 0.104 0.144 0.233 0.340 1.331 28.000 0.196 1.227 1.146 0.319 ms 14.55 279
Server Jitter NMEA(0) 0.000 0.000 0.000 0.001 0.014 0.056 66.960 0.014 0.055 1.617 0.063 ms 28.47 997.4
Server Offset 2a05:d012:3ca:8100:983c:cae0:5e49:4d81 (paris.time.system76.com) -155.580 -0.638 -0.291 0.009 0.325 1.354 33.262 0.617 1.993 3.796 -0.050 ms -37.23 1502
Server Offset NMEA(0) -149.658 -0.051 -0.027 0.002 0.032 0.485 66.509 0.059 0.536 1.868 -0.009 ms -54.46 4795
Temp LM0 34.000 34.000 34.000 37.000 39.000 39.000 39.000 5.000 5.000 1.388 36.828 °C
Temp LM1 42.000 48.000 61.000 64.000 68.000 73.000 74.000 7.000 25.000 3.624 64.437 °C
Temp LM2 30.000 36.000 52.000 57.000 62.000 66.000 67.000 10.000 30.000 4.239 56.755 °C
Temp LM3 39.000 47.000 60.000 64.000 68.000 73.000 74.000 8.000 26.000 3.887 64.200 °C
Temp LM4 36.000 42.000 56.000 61.000 65.000 70.000 72.000 9.000 28.000 3.799 60.833 °C
Temp LM5 32.000 37.000 53.000 57.000 61.000 66.000 67.000 8.000 29.000 4.051 57.186 °C
Temp LM6 39.000 44.000 57.000 60.000 63.000 68.000 70.000 6.000 24.000 3.137 59.872 °C
Temp LM7 40.000 45.000 58.000 62.000 66.000 71.000 72.000 8.000 26.000 3.620 62.032 °C
Temp LM8 41.000 46.000 60.000 63.000 67.000 72.000 73.000 7.000 26.000 3.435 63.130 °C
Temp LM9 41.000 46.000 60.000 63.000 67.000 71.000 72.000 7.000 25.000 3.387 63.223 °C
Temp ZONE0 42.000 48.000 61.000 64.000 68.000 73.000 74.000 7.000 25.000 3.637 64.454 °C
Summary as CSV file


Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!